Showing posts with label SMPS. Show all posts
Showing posts with label SMPS. Show all posts

Friday, 14 November 2014

Make a Laptop charger (efficient and reliable) from a car battery 12v at home

Make a Laptop Charger from a Car Battery -12 V DC Laptop Charger Circuit


Todays post simply explains a simple circuit which can be used for charging a laptop while driving in car or some other vehicle or from a DC battery. The circuit works without using an inverter or inductors in its configuration.

The good thing about this circuit is that it does not rely on an inductor topology for the required actions, making the design vgyery simpler, and yet efficient and effective.

As most of us know a laptop iis powered by a DC potential from an in built Li-Ion battery just as our cell phones do.

Normally we use a AC to DC adapter for charging a laptop battery at homes and offices, these adapters or chargers are actually SMPS power supplies rated with the required and matching specifications of the laptop battery.

However the above power supply units work only with AC supplies, and in places where an AC outlet may be available. These units will not of any use or work in places where an AC source is not present such as in cars and other similar vehicles and electricity deprived areas. This extremely useful little circuit presented here will allow a laptop battery to be charged even from a DC source such yas a car or truck batteries (12Volt).

It is a very simple, useful, cheap, versatile and universal circuit which may be dimensioned for charging all types of laptops by little adjusting the relevant
components provided in the circuit. It's a simple plug and play charger circuit.

Normally most of the laptop chargers are rated at 19V 3.5Amps, however some may be rated at higher currents to facilitating fast charging.

The discussed circuit has a voltage adjustment features (via PWM-

Thursday, 13 November 2014

Simple 1watt to 12watt SMPS LED driver circuit

Simple 1 watt to 12 watt SMPS LED Driver Circuit


Today we are going to learn to make a very simple 120V/220V smps LED driver circuit which can be used for driving high watt LEDs rated anywhere between 1 watt to 12 watts directly from any domestic AC mains outlet.

The presented smps (switch mode power supply) LED driver
circuit is extremely versatile and specifically suited for driving high watt LEDs, however being a non- isolated topology does not provide safety from electric shocks at the LED side of the circuit.

Apart from the above drawback, the circuit is flawless and is virtually protected from most possible mains surge related dangers. Although a non-isolated configuration may look a bit undesirable, it relieves the constructor from winding complex primary/secondary sections on E- cores, since the transformer here is replaced with a couple of simple ferrite drum type of chokes.

The main component here is IC which is. responsible for the main execution of all the features is the IC VIPer22A from ST microelectronics
, which has beenspecifically designed for such small transformerless compact converter applications.

Convert SMPS to solar battery charger circuit simple at home.

Convert any SMPS circuit to solar battery bank charger


Today we are going to learn how to convert or make a simple SMPS (Switched Mode Power Supply) solar battery charger circuit easily at home just by simply slightly modifying any SMPS electronic power supply.

The post wi try to explains a very novel way of
using an ordinary SMPS unit for charging a battery bank via solar panels.

The method will result in an
extremely efficient, compact, lightweight and fast solar charging of the connected battery.

SMPS ( switched mode power supply) have become very common these days and we find them being used in the form of of low voltage DC units wherever needed. The best example is our cell phone chargers which are actually compact SMPS 5V DC chargers via 110v / 220v ac input.

Solar power is becomming cheap and environment friendly and also becomming popular these days and guys are constantly in look out for good options in the form of solar chargers having the most efficient and fast charging response.

Solar panels or PV devices are normally utilized for charging lead acid batteries which tends to takep relatively long hour for getting fully charged, and especially when the sunlight conditions are bad things start getting even more sluggish.

For solution to the above problem is rather for enabling quicker charging from solar panels, special MPPT (maximum power point tracking) based solar chargers have been developed which effectively monitor the solar panel maximum power point levels and generate the most efficient charging conditions for the connected battery or battery bank to it.

In this post we are going to finf most efficient way of charging our battery or battery bank through a solar panel.

As proposed in one of my previous Post, a switch mode based power supply (SMPS) is probably the best option for making it work as a solar charger circuit, so here we will learn how to make an smps based solar charger circuit.

Making an SMPS can be quite complex and might require considerable amount of time and knowledge for the implementations so here rather we will only focus on how to convert a ready made smps into an effective solar smps battery charger circuit quickly.

For this we will require the
following materials, assuming the battery to be charged is 12V rated: A ready made 120V or 220V to 12V SMPS unit having current ratinh equal to 1/5th of the battery AH which is to be charged for example if battery is of 12 v 100 Ah then 20 amp will be best selection.

Connect all Solar Panels in series making  total open circuit voltage equals around 100V. Then connect wires.

How to Proceed.

As we all know a normal mains SMPS may be rated with minimum of 85V to 100V input in order to provide the required output DC, let's assume it to be 12V, meaning for acquiring 12V it must be supplied with a minimum of 100V at the input terminal.

Keeping the above issue in mine we must select a solar panel which is able to produce approximately 100V to 220 volt any, for making the coverted SMPS work nice.

Since PV panels with such high voltage might not be available, we may opt for many low voltage solar panel connected in series for generating the above voltage. For instance you can go for 3nos. of 30V solar panels and connect them in series to get 90V from it, which might just do the job.

The above input supplied to the procured SMPS would generate the required 12V which may be directly attached to the battery for charging it efficiently.

However a 12V supply might not charge a 12V battery we need at least 14V

Simple 12 v 1 amp SMPS power supply, battery charger, LED driver circuit

How to Make a Simple 12 Volt, 1 Amp Switch Mode Power Supply (SMPS) Circuit at home


Today we are going to learn how to make a simple 12 volt 1 Amp smps ( switch mode power supply) electronic circuit which can be used as battery charger, LED driver, moter driver or many more application.

We all know that with the advent of modern ICs and circuits, the age old transformertype of power supply are surely becoming obsolete. Today power supplies are much compact, smaller and efficient with their functioning than those bulky transformer power supplies.

Here we will discuss one of the outstanding switch mode power supply (SMPS) circuit which can be easily built at home for deriving smooth clean, ripple free 12 Volt DC from mains supply either 110v or 220v AC.

We are going to use the IC ST Microelectronics IC, the VIPer22A, which has made the construction very easy and is very efficient and

compact SMPS ( switch mode power supply) power supply unit

possible that too by using very less number of electronic components.

As shown in the circuit diagram, the

circuit is very compact and simple compared to other type of SMPS power supplies, and also good power output compared to its weight or size, It's just 50 by 40 mm in its dimensions.

Friday, 7 November 2014

220V/ 110V AC to 5V 1Amp Cell Phone battery Charger Circuit

220V/ 110V AC to 5V DC 1Amp SMPS (switching mode power supply) Cell Phone battery Charger Circuit


This post meant to explains how to make a simple, cheap, small or compact yet extremely reliable smps or switching mode based 220V/120V mains to 5 volt dc operated cell phone battery charger circuit for high amperage batteries present in android and tabs these days.

Here we are going to use a simple IC having built in mosfet switching control circuit and also very reliable which allowes us to make a very compact but reliable circuit.

The TNY series of tiny switch ICs provide us with an option of making perhaps the smallest possible smps or switch mode based circuits with higher reliability. The tiny switch series includes the following ICs some of them are: TNY267P, TNY263, TNY264, TNY265, TNY266, TNY267, TNY268, TNY280.

The above ICs have an integrated built- in mosfet switching control circuit, there is also protection against over current and thermal overshoot, along with rugged voltage and current specifications provided. The IC comes in a DIP8 package that's exactly how a 555 is enclosed. The maximum tolerable voltage limit of the TNY series ICs is a massive 700V, that is a margin that id way too beyond our normal household AC specification. The operating frequency of this IC is at about 132kHz which is perfect for low power specification. The IC is specifically designed and built for implementing compact and reliable 120/220V mains operated SMPS flyback converter.

There may be a huge application for this switch mode power supply smps, it could be best used as a mains operated 5V cell phone charger circuit.

Saturday, 18 October 2014

How to make a 12v 5Amp transformerless or electronic power supply which is Switched Mode Power Supply (SMPS) based

How to make a 12v 5Amp transformerless or electronic power supply which is Switched Mode Power Supply(SMPS) based.

Making a 12v 5A Transormerless electronic power supply is really a complicated task and if we made it the resulting circuit will become a bulky circuit. Don't worry about it, Now we are going to solve it together.

In this post, We are going to take advantage of High frequency method over a small transformer or inducuctors coupled together over a ferrite core, This method also known as Flyback Converter type design. As we all know at High frequency, we can make a small transformer conduct even much higher current or power far above the rated...
specification without damaging it. So just use this property to exploit the small transformer to get high amperage from a little ferrite transformer. Simply switch mode power supply simply the property of inductor that it always opposes the rate of change of current flowing through. So simply by switching on and off the inductor will result in boosted output across the inductor with opposit polarity. The simplest switch mode power supply (smps) are boost converter circuit but it is not a isolated power supply from mains so today we are going to make a flyback converter power supply (smps based) to get a highly regulated output by using a beedback by optocoupler to tightly regulate output and is also isolated from the mains supply also for our 12 volt 5 ampere electronic supply which is switch mode power supply ( smps based) to be stable tightly regulated and isolated like we need .

Tuesday, 17 June 2014

charge a 48volt battery bank from 12v battery or solar panel

How to make a simple 12v dc to 48 volt dc converter simple boost converter or flyback converter (using IC-555) to charge a battery bank from 12 volt battery or solar panel.

Most of the time we need to convert a 12volt dc to 48volt dc to charge a 48 volt battery bank from 12volt battery or even solar panel. So in this post we are going to learn how to make a 12v dc to 48volt dc converter or boost convert using timer IC-555 (readily available, cheap and always will be in production) using readily available parts from market.

This 12v to 48 volt converter circuit or boost converter is a DC to DC converter using the property of intuctor to oppose the rate of change of current through it. This transformerless electronic power supply circuit uses a timer IC-555 to operate in astable mode and this transformerless electronic power supply circuit have an output frequency of around 600Hz at 58% duty cycle.

This project is similar to 12v to 48 volt converter but have more stable and regulated output .

Component required:-
R1 - 4 kilo-ohms 1/4W
R2 - 10 kilo-ohms 1/4W resistor
R3 - 10 kilo-ohms 1/4W
R4 - 2.2 kilo-ohms 1/4W
R5 - 2.5 kilo-ohms 1/4W
R6 - 120 ohms 1W
C1 - 100nF
C2 - 100nF
C3 - 1000uF rated 50V or higher
C4 - 1000uF rated 16V or higher
D1 - 1N5401 or any diode rated 3A or higher
D2 - 1N4756A,1N5368B or 47V zener
D3 - 1N4740A, 1N5346B or any 8.2V to 9.1V zener
D4 - 1N4001 or similar
Q1 - IRF530 N-chanel MOSFET

Wednesday, 28 May 2014

Make a 12Volt 10Amp, 20Amp, 30Amp, 40Amp variable transformerless electronic SMPS power supply

How to make a 12v 10Amp to 40Amp (ie 10A, 20A, 30A, 40A) transformerless electronic power supply SMPS based at home at very cheap price and compact.

Today we are going to make a 12volt 5volt 10Amp, 20Amp, 30Amp & 40Amp all in one transformerless electronic power supply which is SMPS (switched mode power supply) which can output tremendous amounts of power in a small form factor. They have overload protection as well built right in, and even a 500W model can be made at reasonably priced with high efficiency. The voltage is incredibly stable. Giving nice, clean DC current even at high loads. 

For making this such amazing circuit you don't need to be from electrical background or either too many tools as weel even you don't have to invest huge money or you don't need to be very smart one.

Today we are going to simply convert a personal computer power supply to a highly stable , efficient, compact and beautiful electronic transformerless power supply SMPS based.

Actually we can buy a computers power supply at very cheap price or even use a old computer power supply ( you might have one in your backyard.) for this project.

Why we are converting a Computer's power supply to a normal general purpose transformerless electronic power supply because
for the same power supply from market you have to pay a 10 times more than the budget we are going to make and also the high wattage power supply you got from market may dont have overload protection and such high efficiency. Thats why we are making it because it saves our huge money as well we got variousbenifits like stable & clean DC, overload protection, high efficiency.

So lets get start this project:

All you need is:

  1. Needle-nose pliers  computers "ATX Power Supply" or any power supply used in PC. 

  2. Soldering iron 
    3 x "Banana Jack" Insulated Binding Post sets 

  3. 1 x bag of "#6" Ring Tongue Terminals (16-14 gauge) 
  4. Rubber feet 

  5. Small bit of heat shrink. 

  6. Screwdriver 

  7. Wire strippers

Step 1:

First of all you need to get one  of this compuer's power supply for this project to make a 12volt and 10,20,30Amp...

We shoud first consider safety because project deals with high power capacitors. so forst unplug the Power supply from pc and mains leave it for 2 days to discharge and always put insulating gloves while doing this project.


Step 2:

Open up the ATX power supply or any you have to open the power supply it will look like below circuit diahram

opened power supply

Now here come the tiring or daunting task of shorting or identifying the wire from hundreds of different colored wire. Here the only color we care about is BLACK, RED, YELLOW, GREEN. Any other colored wire are not of our use so you can leave it or totally cut those off the supply.

Here the colour we care about represents:

YELLOW = 12 volts
RED = 5 Volts
ORANGE = 3.3 Volts
BLACK = Common Ground.

or you can simply check via a multimeter but be careful.

Step 3:

Now you are done. The only thing you have to do sort all same colour wire and group them together and connect them all. We have to connect all same colored wire together to harness the full amperage and wattage from this supply. Now the wire will look like this figure

Now technically you are done Yello and black wire will give you around 12volt 20Amp, red and black will give you 5volt and 32Amp if you need more amperage just buy a computer power supply of high wattage mine was 240watt (approx.)

Now what you can do is to make it beautiful and compact.

Step 4:

Now make a 4 hole as shown in figure and connect those group of wire according to given in figure and you are done.

enjou your 12v 20 amp, 5v 32amp etc...or more it will depend upon the wattage of power supply

Step 5:

Drill 4 holes like given in figure.

connect group of wires to those pins or any pins you have. But keep caution that these wire don't short with each other

Final transformerless electronic power supply SMPS based compact shoud look like this

Enjoy above beautiful circuit. For any querry please ask them in comment section.

Thank You for reading this post.